MATH 20D Spring 2023 Lecture 9.

Conjugate roots, Free Mechanical Vibrations

Outline

More on the case of complex roots.

Contents

More on the case of complex roots.

Let $a \neq 0$, *b*, and *c* be constants. The ODE

$$ay'' + by' + cy = 0$$

admits a general solutions of three distinct types

글 🖌 🔺 글 🕨

< 口 > < 同 >

Let $a \neq 0$, *b*, and *c* be constants. The ODE

$$ay'' + by' + cy = 0$$

admits a general solutions of three distinct types Case $b^2 - 4ac > 0$:

프 + + 프 +

• • • • • • • • •

Let $a \neq 0$, b, and c be constants. The ODE

$$ay'' + by' + cy = 0$$

admits a general solutions of three distinct types

Case $b^2 - 4ac > 0$: $ar^2 + br + c = 0$ has distinct real roots

$$r_1 = \frac{-b + \sqrt{b^2 - 4ac}}{2a}$$
 and $r_2 = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$

글 🖌 🔺 글 🕨

< 口 > < 同 >

Let $a \neq 0$, b, and c be constants. The ODE

$$ay'' + by' + cy = 0$$

admits a general solutions of three distinct types

Case $b^2 - 4ac > 0$: $ar^2 + br + c = 0$ has **distinct real roots**

$$r_1 = \frac{-b + \sqrt{b^2 - 4ac}}{2a}$$
 and $r_2 = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$.

The expression $y(t) = C_1 e^{r_1 t} + C_2 e^{r_2 t}$ is a general solution.

3 K 4 3 K

Let $a \neq 0$, b, and c be constants. The ODE

$$ay'' + by' + cy = 0$$

admits a general solutions of three distinct types

Case $b^2 - 4ac > 0$: $ar^2 + br + c = 0$ has **distinct real roots**

$$r_1 = \frac{-b + \sqrt{b^2 - 4ac}}{2a}$$
 and $r_2 = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$.

The expression $y(t) = C_1 e^{r_1 t} + C_2 e^{r_2 t}$ is a general solution. **Case** $b^2 - 4ac = 0$:

3 K 4 3 K

Let $a \neq 0$, b, and c be constants. The ODE

$$ay'' + by' + cy = 0$$

admits a general solutions of three distinct types

Case $b^2 - 4ac > 0$: $ar^2 + br + c = 0$ has distinct real roots

$$r_1 = \frac{-b + \sqrt{b^2 - 4ac}}{2a}$$
 and $r_2 = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$.

The expression $y(t) = C_1 e^{r_1 t} + C_2 e^{r_2 t}$ is a general solution. **Case** $b^2 - 4ac = 0$: $ar^2 + br + c = 0$ has a single repeated real root

$$r = \frac{-b}{2a}.$$

3 N A 3 N

Let $a \neq 0$, b, and c be constants. The ODE

$$ay'' + by' + cy = 0$$

admits a general solutions of three distinct types

Case $b^2 - 4ac > 0$: $ar^2 + br + c = 0$ has distinct real roots

$$r_1 = \frac{-b + \sqrt{b^2 - 4ac}}{2a}$$
 and $r_2 = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$.

The expression $y(t) = C_1 e^{r_1 t} + C_2 e^{r_2 t}$ is a general solution. **Case** $b^2 - 4ac = 0$: $ar^2 + br + c = 0$ has a single repeated real root

$$r = \frac{-b}{2a}.$$

The expression $y(t) = C_1 e^{rt} + C_2 t e^{rt}$ is a general solution.

イロト イポト イラト イラト 一戸

Let $a \neq 0$, b, and c be constants. The ODE

$$ay'' + by' + cy = 0$$

admits a general solutions of three distinct types

Case $b^2 - 4ac > 0$: $ar^2 + br + c = 0$ has distinct real roots

$$r_1 = \frac{-b + \sqrt{b^2 - 4ac}}{2a}$$
 and $r_2 = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$.

The expression $y(t) = C_1 e^{r_1 t} + C_2 e^{r_2 t}$ is a general solution. Case $b^2 - 4ac = 0$: $ar^2 + br + c = 0$ has a single repeated real root

$$r = \frac{-b}{2a}.$$

The expression $y(t) = C_1 e^{rt} + C_2 t e^{rt}$ is a general solution. Case $b^2 - 4ac < 0$:

イロト イポト イラト イラト 一戸

Let $a \neq 0$, b, and c be constants. The ODE

$$ay'' + by' + cy = 0$$

admits a general solutions of three distinct types

Case $b^2 - 4ac > 0$: $ar^2 + br + c = 0$ has distinct real roots

$$r_1 = \frac{-b + \sqrt{b^2 - 4ac}}{2a}$$
 and $r_2 = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$.

The expression $y(t) = C_1 e^{r_1 t} + C_2 e^{r_2 t}$ is a general solution. Case $b^2 - 4ac = 0$: $ar^2 + br + c = 0$ has a single repeated real root

$$r = \frac{-b}{2a}.$$

The expression $y(t) = C_1 e^{rt} + C_2 t e^{rt}$ is a general solution. Case $b^2 - 4ac < 0$: $ar^2 + br + c = 0$ has two complex conjugate roots

$$\alpha \pm i\beta$$
 where $\alpha = -b/2a$ and $\beta = \sqrt{4ac - b^2}/2a$.

イロト イポト イヨト イヨト 三日

Let $a \neq 0$, b, and c be constants. The ODE

$$ay'' + by' + cy = 0$$

admits a general solutions of three distinct types

Case $b^2 - 4ac > 0$: $ar^2 + br + c = 0$ has distinct real roots

$$r_1 = \frac{-b + \sqrt{b^2 - 4ac}}{2a}$$
 and $r_2 = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$.

The expression $y(t) = C_1 e^{r_1 t} + C_2 e^{r_2 t}$ is a general solution. Case $b^2 - 4ac = 0$: $ar^2 + br + c = 0$ has a single repeated real root

$$r = \frac{-b}{2a}.$$

The expression $y(t) = C_1 e^{rt} + C_2 t e^{rt}$ is a general solution. **Case** $b^2 - 4ac < 0$: $ar^2 + br + c = 0$ has **two complex conjugate roots**

$$\alpha \pm i\beta$$
 where $\alpha = -b/2a$ and $\beta = \sqrt{4ac - b^2/2a}$.

The expression $y(t) = C_1 e^{\alpha t} \cos(i\beta t) + C_2 e^{\alpha t} \sin(\beta t)$ is a general solution.

Example

Solve the initial value problem

$$y'' + 2y' + 4y = 0,$$
 $y(0) = 0,$ $y'(0) = 1$ (1)

æ

∢ ≣⇒

∃ ▶

Example

Solve the initial value problem

$$y'' + 2y' + 4y = 0,$$
 $y(0) = 0,$ $y'(0) = 1$ (1)

• The auxiliary equation $r^2 + 2r + 4 = 0$ has complex conjugate roots

$$lpha+ieta$$
 and $lpha-ieta$ where $lpha=-1$ and $eta=\sqrt{3}.$

3

イロト イボト イヨト イヨト

Example

So

Solve the initial value problem

$$y'' + 2y' + 4y = 0,$$
 $y(0) = 0,$ $y'(0) = 1$

• The auxiliary equation $r^2 + 2r + 4 = 0$ has complex conjugate roots

$$lpha + ieta$$
 and $lpha - ieta$
where $lpha = -1$ and $eta = \sqrt{3}$.
So
 $y(t) = C_1 e^{-t} \cos(\sqrt{3}t) + C_2 e^{-t} \sin(\sqrt{3}t)$

is a general solution.

э

글 🖌 🖌 글 🕨

Example

So

Solve the initial value problem

$$y'' + 2y' + 4y = 0,$$
 $y(0) = 0,$ $y'(0) = 1$

• The auxiliary equation $r^2 + 2r + 4 = 0$ has complex conjugate roots

$$\alpha + i\beta$$
 and $\alpha - i\beta$
where $\alpha = -1$ and $\beta = \sqrt{3}$.
So
 $y(t) = C_1 e^{-t} \cos(\sqrt{3}t) + C_2 e^{-t} \sin(\sqrt{3}t)$

is a general solution. Substituting in y(0) = 0 we obtain $C_1 = 0$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Example

So

Solve the initial value problem

where $\alpha = -1$ and

$$y'' + 2y' + 4y = 0,$$
 $y(0) = 0,$ $y'(0) = 1$

• The auxiliary equation $r^2 + 2r + 4 = 0$ has complex conjugate roots

$$\alpha + i\beta$$
 and $\alpha - i\beta$
 $\beta = \sqrt{3}.$

$$y(t) = C_1 e^{-t} \cos(\sqrt{3}t) + C_2 e^{-t} \sin(\sqrt{3}t)$$

is a general solution. Substituting in y(0) = 0 we obtain $C_1 = 0$. So $y(t) = C_2 e^{-t} \sin(\sqrt{3}t)$ and

$$y'(t) = \sqrt{3}C_2e^{-t}\cos(\sqrt{3}t) - C_2e^{-t}\sin(\sqrt{3}t)$$

(4 同) (4 回) (4 回)

Example

Solve the initial value problem

$$y'' + 2y' + 4y = 0,$$
 $y(0) = 0,$ $y'(0) = 1$

• The auxiliary equation $r^2 + 2r + 4 = 0$ has complex conjugate roots

$$lpha+ieta$$
 and $lpha-ieta$ where $lpha=-1$ and $eta=\sqrt{3}.$

So

$$y(t) = C_1 e^{-t} \cos(\sqrt{3}t) + C_2 e^{-t} \sin(\sqrt{3}t)$$

is a general solution. Substituting in y(0) = 0 we obtain $C_1 = 0$. So $y(t) = C_2 e^{-t} \sin(\sqrt{3}t)$ and

$$y'(t) = \sqrt{3}C_2e^{-t}\cos(\sqrt{3}t) - C_2e^{-t}\sin(\sqrt{3}t)$$

Applying the condition y'(0) = 1 we conclude $C_2 = 1/\sqrt{3}$.

Example

Solve the initial value problem

$$y'' + 2y' + 4y = 0,$$
 $y(0) = 0,$ $y'(0) = 1$

• The auxiliary equation $r^2 + 2r + 4 = 0$ has complex conjugate roots

$$lpha+ieta$$
 and $lpha-ieta$ where $lpha=-1$ and $eta=\sqrt{3}.$

So

$$y(t) = C_1 e^{-t} \cos(\sqrt{3}t) + C_2 e^{-t} \sin(\sqrt{3}t)$$

is a general solution. Substituting in y(0) = 0 we obtain $C_1 = 0$. So $y(t) = C_2 e^{-t} \sin(\sqrt{3}t)$ and

$$y'(t) = \sqrt{3}C_2e^{-t}\cos(\sqrt{3}t) - C_2e^{-t}\sin(\sqrt{3}t)$$

Applying the condition y'(0) = 1 we conclude $C_2 = 1/\sqrt{3}$.

• So
$$y(t) = \frac{1}{\sqrt{3}}e^{-t}\sin(\sqrt{3}t)$$
 solves the IVP.

• When $b^2 - 4ac < 0$ the solutions of the ODE

$$ay''(t) + by'(t) + cy(t) = 0.$$
 (2)

have an oscillatory or sinosoidal nature.

• When $b^2 - 4ac < 0$ the solutions of the ODE

$$ay''(t) + by'(t) + cy(t) = 0.$$
 (2)

have an **oscillatory** or **sinosoidal** nature.

Theorem

Suppose $b^2 - 4ac < 0$ and consider the general solution to the ODE (2) given by

$$\mathbf{y}(t) = C_1 e^{\alpha t} \cos(\beta t) + C_2 e^{\alpha t} \sin(\beta t).$$
(3)

where $\alpha \pm i\beta$ are the roots to the equation $ar^2 + br + c = 0$.

• When $b^2 - 4ac < 0$ the solutions of the ODE

$$ay''(t) + by'(t) + cy(t) = 0.$$
 (2)

have an oscillatory or sinosoidal nature.

Theorem

Suppose $b^2 - 4ac < 0$ and consider the general solution to the ODE (2) given by

$$y(t) = C_1 e^{\alpha t} \cos(\beta t) + C_2 e^{\alpha t} \sin(\beta t).$$
(3)

where $\alpha \pm i\beta$ are the roots to the equation $ar^2 + br + c = 0$. Then (3) can be rewritten in the form

$$y(t) = Ae^{\alpha t}\sin(\beta t + \phi)$$

where $A = \sqrt{C_1^2 + C_2^2}$ and $\phi \in [0, 2\pi)$ satisfies $C_1 = A \sin(\phi)$ and $C_2 = A \cos(\phi)$.

• When $b^2 - 4ac < 0$ the solutions of the ODE

$$ay''(t) + by'(t) + cy(t) = 0.$$
 (2)

have an oscillatory or sinosoidal nature.

Theorem

Suppose $b^2 - 4ac < 0$ and consider the general solution to the ODE (2) given by

$$y(t) = C_1 e^{\alpha t} \cos(\beta t) + C_2 e^{\alpha t} \sin(\beta t).$$
(3)

where $\alpha \pm i\beta$ are the roots to the equation $ar^2 + br + c = 0$. Then (3) can be rewritten in the form

 $y(t) = Ae^{\alpha t}\sin(\beta t + \phi)$

where $A = \sqrt{C_1^2 + C_2^2}$ and $\phi \in [0, 2\pi)$ satisfies $C_1 = A\sin(\phi)$ and $C_2 = A\cos(\phi)$.

Example

- (a) Solve the IVP $\frac{1}{8}y''(t) + 16y(t) = 0$, y(0) = 1/2, $y'(0) = -\sqrt{2}$.
- (b) Rewrite your solution to (a) in the form $y(t) = Ae^{\alpha t} \sin(\beta t + \phi)$.

Contents

• An object of mass *m* is attached to a wall via a spring and placed on a table.

An object of mass *m* is attached to a wall via a spring and placed on a table.
 Let *b* ≥ 0 denote the coefficient of friction of the surface.

An object of mass *m* is attached to a wall via a spring and placed on a table.
 Let *b* ≥ 0 denote the coefficient of friction of the surface.
 Let *k* > 0 denote the constant measuring the stiffness of the spring.

- An object of mass *m* is attached to a wall via a spring and placed on a table.
 Let *b* ≥ 0 denote the coefficient of friction of the surface.
 Let *k* > 0 denote the constant measuring the stiffness of the spring.
- At time t = 0 the mass is displaced y_0 units and released with velocity v_0 .

- An object of mass *m* is attached to a wall via a spring and placed on a table.
 Let *b* ≥ 0 denote the coefficient of friction of the surface.
 Let *k* > 0 denote the constant measuring the stiffness of the spring.
- At time t = 0 the mass is displaced y_0 units and released with velocity v_0 .
- If y(t) denotes the displacement of the mass at time t relative to the spring equilibrium then y(t) solves the IVP

$$my''(t) + by'(t) + ky(t) = 0,$$
 $y(0) = y_0, y'(0) = v_0.$

3 K 4 3 K

- An object of mass *m* is attached to a wall via a spring and placed on a table.
 Let *b* ≥ 0 denote the coefficient of friction of the surface.
 Let *k* > 0 denote the constant measuring the stiffness of the spring.
- At time t = 0 the mass is displaced y_0 units and released with velocity v_0 .
- If y(t) denotes the displacement of the mass at time t relative to the spring equilibrium then y(t) solves the IVP

$$my''(t) + by'(t) + ky(t) = 0,$$
 $y(0) = y_0, y'(0) = v_0.$

The solution to the above IVP is called the Equation of Motion for the mass.

- An object of mass *m* is attached to a wall via a spring and placed on a table.
 Let *b* ≥ 0 denote the coefficient of friction of the surface.
 Let *k* > 0 denote the constant measuring the stiffness of the spring.
- At time t = 0 the mass is displaced y_0 units and released with velocity v_0 .
- If y(t) denotes the displacement of the mass at time t relative to the spring equilibrium then y(t) solves the IVP

$$my''(t) + by'(t) + ky(t) = 0,$$
 $y(0) = y_0, y'(0) = v_0.$

The solution to the above IVP is called the Equation of Motion for the mass.

Theorem

When $b^2 - 4mk < 0$, the equation of motion of the mass takes the form

$$y(t) = Ae^{\alpha t}\sin(\beta t + \phi)$$

where $\alpha = -b/2m \leqslant 0$ and $\beta = \sqrt{4mk - b^2}/2m$.

- An object of mass *m* is attached to a wall via a spring and placed on a table.
 Let *b* ≥ 0 denote the coefficient of friction of the surface.
 Let *k* > 0 denote the constant measuring the stiffness of the spring.
- At time t = 0 the mass is displaced y_0 units and released with velocity v_0 .
- If y(t) denotes the displacement of the mass at time t relative to the spring equilibrium then y(t) solves the IVP

$$my''(t) + by'(t) + ky(t) = 0,$$
 $y(0) = y_0, y'(0) = v_0.$

The solution to the above IVP is called the Equation of Motion for the mass.

Theorem

When $b^2 - 4mk < 0$, the equation of motion of the mass takes the form

$$y(t) = Ae^{\alpha t}\sin(\beta t + \phi)$$

where $\alpha = -b/2m \le 0$ and $\beta = \sqrt{4mk - b^2}/2m$. Hence if b > 0 then the mass oscillates with a decaying amplitude given the **damping factor** $Ae^{\alpha t}$.

A 1/4 kg mass is attached to a spring with stiffness coefficient 4 N/m.

3

A 1/4 kg **mass** is attached to a spring with **stiffness** coefficient 4 N/m. The coefficient of **friction** for the system is 1 N-sec/m and the mass is displaced 1/2 m to the left and given an initial velocity of 1 m/sec to the left.

3 1 4 3

A 1/4 kg **mass** is attached to a spring with **stiffness** coefficient 4 N/m. The coefficient of **friction** for the system is 1 N-sec/m and the mass is displaced 1/2 m to the left and given an initial velocity of 1 m/sec to the left. (a) Find the equation of motion for the mass.

→ Ξ → < Ξ</p>

A 1/4 kg **mass** is attached to a spring with **stiffness** coefficient 4 N/m. The coefficient of **friction** for the system is 1 N-sec/m and the mass is displaced 1/2 m to the left and given an initial velocity of 1 m/sec to the left.

- (a) Find the equation of motion for the mass.
- (b) Determine when the mass first returns to it's equilibrium.

A 1/4 kg **mass** is attached to a spring with **stiffness** coefficient 4 N/m. The coefficient of **friction** for the system is 1 N-sec/m and the mass is displaced 1/2 m to the left and given an initial velocity of 1 m/sec to the left.

- (a) Find the equation of motion for the mass.
- (b) Determine when the mass first returns to it's equilibrium.
- (c) Calculate the maximum displacement to the left that the mass will attain.

医下颌 医下

A 1/4 kg **mass** is attached to a spring with **stiffness** coefficient 4 N/m. The coefficient of **friction** for the system is 1 N-sec/m and the mass is displaced 1/2 m to the left and given an initial velocity of 1 m/sec to the left.

- (a) Find the equation of motion for the mass.
- (b) Determine when the mass first returns to it's equilibrium.
- (c) Calculate the maximum displacement to the left that the mass will attain.

医下颌 医下