MATH 20D Spring 2023 Lecture 9.

Conjugate roots, Free Mechanical Vibrations

Outline

(1) More on the case of complex roots.

(2) Free Mechanical Vibrations

Contents

(1) More on the case of complex roots.
(2) Free Mechanical Vibrations

Last Time

Let $a \neq 0, b$, and c be constants. The ODE

$$
a y^{\prime \prime}+b y^{\prime}+c y=0
$$

admits a general solutions of three distinct types

Last Time

Let $a \neq 0, b$, and c be constants. The ODE

$$
a y^{\prime \prime}+b y^{\prime}+c y=0
$$

admits a general solutions of three distinct types
Case $b^{2}-4 a c>0$:

Last Time

Let $a \neq 0, b$, and c be constants. The ODE

$$
a y^{\prime \prime}+b y^{\prime}+c y=0
$$

admits a general solutions of three distinct types
Case $b^{2}-4 a c>0: \underline{a r^{2}+b r+c=0 \text { has distinct real roots }}$

$$
r_{1}=\frac{-b+\sqrt{b^{2}-4 a c}}{2 a} \quad \text { and } \quad r_{2}=\frac{-b-\sqrt{b^{2}-4 a c}}{2 a}
$$

Last Time

Let $a \neq 0, b$, and c be constants. The ODE

$$
a y^{\prime \prime}+b y^{\prime}+c y=0
$$

admits a general solutions of three distinct types
Case $b^{2}-4 a c>0: \underline{a r^{2}+b r+c=0 \text { has distinct real roots }}$

$$
r_{1}=\frac{-b+\sqrt{b^{2}-4 a c}}{2 a} \quad \text { and } \quad r_{2}=\frac{-b-\sqrt{b^{2}-4 a c}}{2 a}
$$

The expression $y(t)=C_{1} e^{r_{1} t}+C_{2} e^{r_{2} t}$ is a general solution.

Last Time

Let $a \neq 0, b$, and c be constants. The ODE

$$
a y^{\prime \prime}+b y^{\prime}+c y=0
$$

admits a general solutions of three distinct types
Case $b^{2}-4 a c>0: \underline{a r^{2}+b r+c=0 \text { has distinct real roots }}$

$$
r_{1}=\frac{-b+\sqrt{b^{2}-4 a c}}{2 a} \quad \text { and } \quad r_{2}=\frac{-b-\sqrt{b^{2}-4 a c}}{2 a}
$$

The expression $y(t)=C_{1} e^{r_{1} t}+C_{2} e^{r_{2} t}$ is a general solution.
Case $b^{2}-4 a c=0$:

Last Time

Let $a \neq 0, b$, and c be constants. The ODE

$$
a y^{\prime \prime}+b y^{\prime}+c y=0
$$

admits a general solutions of three distinct types
Case $b^{2}-4 a c>0: \underline{a r^{2}+b r+c=0 \text { has distinct real roots }}$

$$
r_{1}=\frac{-b+\sqrt{b^{2}-4 a c}}{2 a} \quad \text { and } \quad r_{2}=\frac{-b-\sqrt{b^{2}-4 a c}}{2 a}
$$

The expression $y(t)=C_{1} e^{r_{1} t}+C_{2} e^{r_{2} t}$ is a general solution.
Case $b^{2}-4 a c=0: a r^{2}+b r+c=0$ has a single repeated real root

$$
r=\frac{-b}{2 a}
$$

Last Time

Let $a \neq 0, b$, and c be constants. The ODE

$$
a y^{\prime \prime}+b y^{\prime}+c y=0
$$

admits a general solutions of three distinct types
Case $b^{2}-4 a c>0: \underline{a r^{2}+b r+c=0 \text { has distinct real roots }}$

$$
r_{1}=\frac{-b+\sqrt{b^{2}-4 a c}}{2 a} \quad \text { and } \quad r_{2}=\frac{-b-\sqrt{b^{2}-4 a c}}{2 a} .
$$

The expression $y(t)=C_{1} e^{r_{1} t}+C_{2} e^{r_{2} t}$ is a general solution.
Case $b^{2}-4 a c=0: a r^{2}+b r+c=0$ has a single repeated real root

$$
r=\frac{-b}{2 a}
$$

The expression $y(t)=C_{1} e^{r t}+C_{2} t e^{r t}$ is a general solution.

Last Time

Let $a \neq 0, b$, and c be constants. The ODE

$$
a y^{\prime \prime}+b y^{\prime}+c y=0
$$

admits a general solutions of three distinct types
Case $b^{2}-4 a c>0: \underline{a r^{2}+b r+c=0 \text { has distinct real roots }}$

$$
r_{1}=\frac{-b+\sqrt{b^{2}-4 a c}}{2 a} \quad \text { and } \quad r_{2}=\frac{-b-\sqrt{b^{2}-4 a c}}{2 a} .
$$

The expression $y(t)=C_{1} e^{r_{1} t}+C_{2} e^{r_{2} t}$ is a general solution.
Case $b^{2}-4 a c=0: a r^{2}+b r+c=0$ has a single repeated real root

$$
r=\frac{-b}{2 a}
$$

The expression $y(t)=C_{1} e^{r t}+C_{2} t e^{r t}$ is a general solution.
Case $b^{2}-4 a c<0$:

Last Time

Let $a \neq 0, b$, and c be constants. The ODE

$$
a y^{\prime \prime}+b y^{\prime}+c y=0
$$

admits a general solutions of three distinct types
Case $b^{2}-4 a c>0: \underline{a r^{2}+b r+c=0}$ has distinct real roots

$$
r_{1}=\frac{-b+\sqrt{b^{2}-4 a c}}{2 a} \quad \text { and } \quad r_{2}=\frac{-b-\sqrt{b^{2}-4 a c}}{2 a} .
$$

The expression $y(t)=C_{1} e^{r_{1} t}+C_{2} e^{r_{2} t}$ is a general solution.
Case $b^{2}-4 a c=0: \underline{a r^{2}+b r+c=0 \text { has a single repeated real root }}$

$$
r=\frac{-b}{2 a} .
$$

The expression $y(t)=C_{1} e^{r t}+C_{2} t e^{r t}$ is a general solution.
Case $b^{2}-4 a c<0: a r^{2}+b r+c=0$ has two complex conjugate roots

$$
\alpha \pm i \beta \quad \text { where } \quad \alpha=-b / 2 a \quad \text { and } \quad \beta=\sqrt{4 a c-b^{2}} / 2 a
$$

Last Time

Let $a \neq 0, b$, and c be constants. The ODE

$$
a y^{\prime \prime}+b y^{\prime}+c y=0
$$

admits a general solutions of three distinct types
Case $b^{2}-4 a c>0: \underline{a r^{2}+b r+c=0}$ has distinct real roots

$$
r_{1}=\frac{-b+\sqrt{b^{2}-4 a c}}{2 a} \quad \text { and } \quad r_{2}=\frac{-b-\sqrt{b^{2}-4 a c}}{2 a}
$$

The expression $y(t)=C_{1} e^{r_{1} t}+C_{2} e^{r_{2} t}$ is a general solution.
Case $b^{2}-4 a c=0: \underline{a r^{2}+b r+c=0}$ has a single repeated real root

$$
r=\frac{-b}{2 a} .
$$

The expression $y(t)=C_{1} e^{r t}+C_{2} t e^{r t}$ is a general solution.
Case $b^{2}-4 a c<0: a r^{2}+b r+c=0$ has two complex conjugate roots

$$
\alpha \pm i \beta \quad \text { where } \quad \alpha=-b / 2 a \quad \text { and } \quad \beta=\sqrt{4 a c-b^{2}} / 2 a
$$

The expression $y(t)=C_{1} e^{\alpha t} \cos (i \beta t)+C_{2} e^{\alpha t} \sin (\beta t)$ is a general solution.

Last Time

Example

Solve the initial value problem

$$
\begin{equation*}
y^{\prime \prime}+2 y^{\prime}+4 y=0, \quad y(0)=0, \quad y^{\prime}(0)=1 \tag{1}
\end{equation*}
$$

Last Time

Example

Solve the initial value problem

$$
\begin{equation*}
y^{\prime \prime}+2 y^{\prime}+4 y=0, \quad y(0)=0, \quad y^{\prime}(0)=1 \tag{1}
\end{equation*}
$$

- The auxiliary equation $r^{2}+2 r+4=0$ has complex conjugate roots

$$
\alpha+i \beta \quad \text { and } \quad \alpha-i \beta
$$

where $\alpha=-1$ and $\beta=\sqrt{3}$.

Last Time

Example

Solve the initial value problem

$$
\begin{equation*}
y^{\prime \prime}+2 y^{\prime}+4 y=0, \quad y(0)=0, \quad y^{\prime}(0)=1 \tag{1}
\end{equation*}
$$

- The auxiliary equation $r^{2}+2 r+4=0$ has complex conjugate roots

$$
\alpha+i \beta \quad \text { and } \quad \alpha-i \beta
$$

where $\alpha=-1$ and $\beta=\sqrt{3}$.

- So

$$
y(t)=C_{1} e^{-t} \cos (\sqrt{3} t)+C_{2} e^{-t} \sin (\sqrt{3} t)
$$

is a general solution.

Last Time

Example

Solve the initial value problem

$$
\begin{equation*}
y^{\prime \prime}+2 y^{\prime}+4 y=0, \quad y(0)=0, \quad y^{\prime}(0)=1 \tag{1}
\end{equation*}
$$

- The auxiliary equation $r^{2}+2 r+4=0$ has complex conjugate roots

$$
\alpha+i \beta \quad \text { and } \quad \alpha-i \beta
$$

where $\alpha=-1$ and $\beta=\sqrt{3}$.

- So

$$
y(t)=C_{1} e^{-t} \cos (\sqrt{3} t)+C_{2} e^{-t} \sin (\sqrt{3} t)
$$

is a general solution. Substituting in $y(0)=0$ we obtain $C_{1}=0$.

Last Time

Example

Solve the initial value problem

$$
\begin{equation*}
y^{\prime \prime}+2 y^{\prime}+4 y=0, \quad y(0)=0, \quad y^{\prime}(0)=1 \tag{1}
\end{equation*}
$$

- The auxiliary equation $r^{2}+2 r+4=0$ has complex conjugate roots

$$
\alpha+i \beta \quad \text { and } \quad \alpha-i \beta
$$

where $\alpha=-1$ and $\beta=\sqrt{3}$.

- So

$$
y(t)=C_{1} e^{-t} \cos (\sqrt{3} t)+C_{2} e^{-t} \sin (\sqrt{3} t)
$$

is a general solution. Substituting in $y(0)=0$ we obtain $C_{1}=0$.
So $y(t)=C_{2} e^{-t} \sin (\sqrt{3} t)$ and

$$
y^{\prime}(t)=\sqrt{3} C_{2} e^{-t} \cos (\sqrt{3} t)-C_{2} e^{-t} \sin (\sqrt{3} t)
$$

Last Time

Example

Solve the initial value problem

$$
\begin{equation*}
y^{\prime \prime}+2 y^{\prime}+4 y=0, \quad y(0)=0, \quad y^{\prime}(0)=1 \tag{1}
\end{equation*}
$$

- The auxiliary equation $r^{2}+2 r+4=0$ has complex conjugate roots

$$
\alpha+i \beta \quad \text { and } \quad \alpha-i \beta
$$

where $\alpha=-1$ and $\beta=\sqrt{3}$.

- So

$$
y(t)=C_{1} e^{-t} \cos (\sqrt{3} t)+C_{2} e^{-t} \sin (\sqrt{3} t)
$$

is a general solution. Substituting in $y(0)=0$ we obtain $C_{1}=0$.
So $y(t)=C_{2} e^{-t} \sin (\sqrt{3} t)$ and

$$
y^{\prime}(t)=\sqrt{3} C_{2} e^{-t} \cos (\sqrt{3} t)-C_{2} e^{-t} \sin (\sqrt{3} t)
$$

Applying the condition $y^{\prime}(0)=1$ we conclude $C_{2}=1 / \sqrt{3}$.

Last Time

Example

Solve the initial value problem

$$
\begin{equation*}
y^{\prime \prime}+2 y^{\prime}+4 y=0, \quad y(0)=0, \quad y^{\prime}(0)=1 \tag{1}
\end{equation*}
$$

- The auxiliary equation $r^{2}+2 r+4=0$ has complex conjugate roots

$$
\alpha+i \beta \quad \text { and } \quad \alpha-i \beta
$$

where $\alpha=-1$ and $\beta=\sqrt{3}$.

- So

$$
y(t)=C_{1} e^{-t} \cos (\sqrt{3} t)+C_{2} e^{-t} \sin (\sqrt{3} t)
$$

is a general solution. Substituting in $y(0)=0$ we obtain $C_{1}=0$.
So $y(t)=C_{2} e^{-t} \sin (\sqrt{3} t)$ and

$$
y^{\prime}(t)=\sqrt{3} C_{2} e^{-t} \cos (\sqrt{3} t)-C_{2} e^{-t} \sin (\sqrt{3} t)
$$

Applying the condition $y^{\prime}(0)=1$ we conclude $C_{2}=1 / \sqrt{3}$.

- So $y(t)=\frac{1}{\sqrt{3}} e^{-t} \sin (\sqrt{3} t)$ solves the IVP.

More on the Case of Conjugate Complex Roots

- When $b^{2}-4 a c<0$ the solutions of the ODE

$$
\begin{equation*}
a y^{\prime \prime}(t)+b y^{\prime}(t)+c y(t)=0 . \tag{2}
\end{equation*}
$$

have an oscillatory or sinosoidal nature.

More on the Case of Conjugate Complex Roots

- When $b^{2}-4 a c<0$ the solutions of the ODE

$$
\begin{equation*}
a y^{\prime \prime}(t)+b y^{\prime}(t)+c y(t)=0 \tag{2}
\end{equation*}
$$

have an oscillatory or sinosoidal nature.

Theorem

Suppose $b^{2}-4 a c<0$ and consider the general solution to the ODE (2) given by

$$
\begin{equation*}
y(t)=C_{1} e^{\alpha t} \cos (\beta t)+C_{2} e^{\alpha t} \sin (\beta t) \tag{3}
\end{equation*}
$$

where $\alpha \pm i \beta$ are the roots to the equation $a r^{2}+b r+c=0$.

More on the Case of Conjugate Complex Roots

- When $b^{2}-4 a c<0$ the solutions of the ODE

$$
\begin{equation*}
a y^{\prime \prime}(t)+b y^{\prime}(t)+c y(t)=0 \tag{2}
\end{equation*}
$$

have an oscillatory or sinosoidal nature.

Theorem

Suppose $b^{2}-4 a c<0$ and consider the general solution to the ODE (2) given by

$$
\begin{equation*}
y(t)=C_{1} e^{\alpha t} \cos (\beta t)+C_{2} e^{\alpha t} \sin (\beta t) \tag{3}
\end{equation*}
$$

where $\alpha \pm i \beta$ are the roots to the equation $a r^{2}+b r+c=0$. Then (3) can be rewritten in the form

$$
y(t)=A e^{\alpha t} \sin (\beta t+\phi)
$$

where $A=\sqrt{C_{1}^{2}+C_{2}^{2}}$ and $\phi \in[0,2 \pi)$ satisfies $C_{1}=A \sin (\phi)$ and $C_{2}=A \cos (\phi)$.

More on the Case of Conjugate Complex Roots

- When $b^{2}-4 a c<0$ the solutions of the ODE

$$
\begin{equation*}
a y^{\prime \prime}(t)+b y^{\prime}(t)+c y(t)=0 \tag{2}
\end{equation*}
$$

have an oscillatory or sinosoidal nature.

Theorem

Suppose $b^{2}-4 a c<0$ and consider the general solution to the ODE (2) given by

$$
\begin{equation*}
y(t)=C_{1} e^{\alpha t} \cos (\beta t)+C_{2} e^{\alpha t} \sin (\beta t) \tag{3}
\end{equation*}
$$

where $\alpha \pm i \beta$ are the roots to the equation $a r^{2}+b r+c=0$. Then (3) can be rewritten in the form

$$
y(t)=A e^{\alpha t} \sin (\beta t+\phi)
$$

where $A=\sqrt{C_{1}^{2}+C_{2}^{2}}$ and $\phi \in[0,2 \pi)$ satisfies $C_{1}=A \sin (\phi)$ and $C_{2}=A \cos (\phi)$.

Example

(a) Solve the IVP $\frac{1}{8} y^{\prime \prime}(t)+16 y(t)=0, y(0)=1 / 2, y^{\prime}(0)=-\sqrt{2}$.
(b) Rewrite your solution to (a) in the form $y(t)=A e^{\alpha t} \sin (\beta t+\phi)$.

Contents

(1) More on the case of complex roots.

(2) Free Mechanical Vibrations

The Mass Spring System

- An object of mass m is attached to a wall via a spring and placed on a table.

The Mass Spring System

- An object of mass m is attached to a wall via a spring and placed on a table. Let $b \geqslant 0$ denote the coefficient of friction of the surface.

The Mass Spring System

- An object of mass m is attached to a wall via a spring and placed on a table. Let $b \geqslant 0$ denote the coefficient of friction of the surface. Let $k>0$ denote the constant measuring the stiffness of the spring.

The Mass Spring System

- An object of mass m is attached to a wall via a spring and placed on a table. Let $b \geqslant 0$ denote the coefficient of friction of the surface. Let $k>0$ denote the constant measuring the stiffness of the spring.
- At time $t=0$ the mass is displaced y_{0} units and released with velocity v_{0}.

The Mass Spring System

- An object of mass m is attached to a wall via a spring and placed on a table. Let $b \geqslant 0$ denote the coefficient of friction of the surface. Let $k>0$ denote the constant measuring the stiffness of the spring.
- At time $t=0$ the mass is displaced y_{0} units and released with velocity v_{0}.
- If $y(t)$ denotes the displacement of the mass at time t relative to the spring equilibrium then $y(t)$ solves the IVP

$$
m y^{\prime \prime}(t)+b y^{\prime}(t)+k y(t)=0, \quad y(0)=y_{0}, \quad y^{\prime}(0)=v_{0} .
$$

The Mass Spring System

- An object of mass m is attached to a wall via a spring and placed on a table. Let $b \geqslant 0$ denote the coefficient of friction of the surface. Let $k>0$ denote the constant measuring the stiffness of the spring.
- At time $t=0$ the mass is displaced y_{0} units and released with velocity v_{0}.
- If $y(t)$ denotes the displacement of the mass at time t relative to the spring equilibrium then $y(t)$ solves the IVP

$$
m y^{\prime \prime}(t)+b y^{\prime}(t)+k y(t)=0, \quad y(0)=y_{0}, \quad y^{\prime}(0)=v_{0} .
$$

The solution to the above IVP is called the Equation of Motion for the mass.

The Mass Spring System

- An object of mass m is attached to a wall via a spring and placed on a table. Let $b \geqslant 0$ denote the coefficient of friction of the surface. Let $k>0$ denote the constant measuring the stiffness of the spring.
- At time $t=0$ the mass is displaced y_{0} units and released with velocity v_{0}.
- If $y(t)$ denotes the displacement of the mass at time t relative to the spring equilibrium then $y(t)$ solves the IVP

$$
m y^{\prime \prime}(t)+b y^{\prime}(t)+k y(t)=0, \quad y(0)=y_{0}, \quad y^{\prime}(0)=v_{0} .
$$

The solution to the above IVP is called the Equation of Motion for the mass.

Theorem

When $b^{2}-4 m k<0$, the equation of motion of the mass takes the form

$$
y(t)=A e^{\alpha t} \sin (\beta t+\phi)
$$

where $\alpha=-b / 2 m \leqslant 0$ and $\beta=\sqrt{4 m k-b^{2}} / 2 m$.

The Mass Spring System

- An object of mass m is attached to a wall via a spring and placed on a table. Let $b \geqslant 0$ denote the coefficient of friction of the surface. Let $k>0$ denote the constant measuring the stiffness of the spring.
- At time $t=0$ the mass is displaced y_{0} units and released with velocity v_{0}.
- If $y(t)$ denotes the displacement of the mass at time t relative to the spring equilibrium then $y(t)$ solves the IVP

$$
m y^{\prime \prime}(t)+b y^{\prime}(t)+k y(t)=0, \quad y(0)=y_{0}, \quad y^{\prime}(0)=v_{0} .
$$

The solution to the above IVP is called the Equation of Motion for the mass.

Theorem

When $b^{2}-4 m k<0$, the equation of motion of the mass takes the form

$$
y(t)=A e^{\alpha t} \sin (\beta t+\phi)
$$

where $\alpha=-b / 2 m \leqslant 0$ and $\beta=\sqrt{4 m k-b^{2}} / 2 m$. Hence if $b>0$ then the mass oscillates with a decaying amplitude given the damping factor $A e^{\alpha t}$.

An Example of Damped Oscillation

Example

A $1 / 4 \mathrm{~kg}$ mass is attached to a spring with stiffness coefficient $4 \mathrm{~N} / \mathrm{m}$.

An Example of Damped Oscillation

Example

A $1 / 4 \mathrm{~kg}$ mass is attached to a spring with stiffness coefficient $4 \mathrm{~N} / \mathrm{m}$. The coefficient of friction for the system is $1 \mathrm{~N}-\mathrm{sec} / \mathrm{m}$ and the mass is displaced $1 / 2$ m to the left and given an initial velocity of $1 \mathrm{~m} / \mathrm{sec}$ to the left.

An Example of Damped Oscillation

Example

A $1 / 4 \mathrm{~kg}$ mass is attached to a spring with stiffness coefficient $4 \mathrm{~N} / \mathrm{m}$. The coefficient of friction for the system is $1 \mathrm{~N}-\mathrm{sec} / \mathrm{m}$ and the mass is displaced $1 / 2$ m to the left and given an initial velocity of $1 \mathrm{~m} / \mathrm{sec}$ to the left.
(a) Find the equation of motion for the mass.

An Example of Damped Oscillation

Example

A $1 / 4 \mathrm{~kg}$ mass is attached to a spring with stiffness coefficient $4 \mathrm{~N} / \mathrm{m}$. The coefficient of friction for the system is $1 \mathrm{~N}-\mathrm{sec} / \mathrm{m}$ and the mass is displaced $1 / 2$ m to the left and given an initial velocity of $1 \mathrm{~m} / \mathrm{sec}$ to the left.
(a) Find the equation of motion for the mass.
(b) Determine when the mass first returns to it's equilibrium.

An Example of Damped Oscillation

Example

A $1 / 4 \mathrm{~kg}$ mass is attached to a spring with stiffness coefficient $4 \mathrm{~N} / \mathrm{m}$. The coefficient of friction for the system is $1 \mathrm{~N}-\mathrm{sec} / \mathrm{m}$ and the mass is displaced $1 / 2$ m to the left and given an initial velocity of $1 \mathrm{~m} / \mathrm{sec}$ to the left.
(a) Find the equation of motion for the mass.
(b) Determine when the mass first returns to it's equilibrium.
(c) Calculate the maximum displacement to the left that the mass will attain.

An Example of Damped Oscillation

Example

A $1 / 4 \mathrm{~kg}$ mass is attached to a spring with stiffness coefficient $4 \mathrm{~N} / \mathrm{m}$. The coefficient of friction for the system is $1 \mathrm{~N}-\mathrm{sec} / \mathrm{m}$ and the mass is displaced $1 / 2$ m to the left and given an initial velocity of $1 \mathrm{~m} / \mathrm{sec}$ to the left.
(a) Find the equation of motion for the mass.
(b) Determine when the mass first returns to it's equilibrium.
(c) Calculate the maximum displacement to the left that the mass will attain.

